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We develop a mathematical programming approach for the classical PSPACE-hard restless bandit problem in stochastic optimization. We
introduce a hierarchy of N (where N is the number of bandits) increasingly stronger linear programming relaxations, the last of which
is exact and corresponds to the (exponential size) formulation of the problem as a Markov decision chain, while the other relaxations
provide bounds and are e)ciently computed. We also propose a priority-index heuristic scheduling policy from the solution to the +rst-
order relaxation, where the indices are de+ned in terms of optimal dual variables. In this way we propose a policy and a suboptimality
guarantee. We report results of computational experiments that suggest that the proposed heuristic policy is nearly optimal. Moreover, the
second-order relaxation is found to provide strong bounds on the optimal value.

1. INTRODUCTION

Research in combinatorial optimization over the last 20 years
has crystallized the idea that our ability to e)ciently solve
a combinatorial optimization problem depends critically on
our ability to construct strong mathematical programming
formulations for it. As a result, much research e/ort has cen-
tered in developing sharper formulations. The developments
in the area of polyhedral combinatorics are strong witnesses
of this trend.
The +eld of stochastic optimization has developed along

quite di/erent lines. Over the last 20 years it has addressed,
with various degrees of success, several key problems
that arise in areas as diverse as computer and commu-
nication networks, manufacturing, and service systems.
In contrast with the situation in combinatorial optimiza-
tion, a characteristic of this body of research is the lack
of a uni+ed and practical solution method. While these
problems can often be formulated in the framework of
dynamic programming, the resulting formulations typi-
cally exhibit a prohibitively large size, which hinders their
application. As a result; every problem is addressed via
ad hoc techniques. Furthermore, the quality of proposed
heuristics is usually assessed by comparing their empirical
performance with that of alternative heuristics, which gives
little information about their degree of suboptimality.
Motivated by the success of the mathematical program-

ming approach to combinatorial optimization, we propose
in this paper a solution approach to the classical restless
bandit problem in stochastic scheduling based on linear pro-
gramming (LP) formulations. This work is part of a larger
program to solve hard stochastic optimization problems via

a mathematical programming approach: the performance
region approach.

1.1. Background: The Performance Region
Approach to Stochastic Optimization

The performance region approach was introduced in a sem-
inal paper by Co/man and Mitrani (1980). It draws on the
mathematical programming approach to optimization, as it
seeks to characterize the region of achievable performance
spanned by a system’s performance measure under a class
of admissible policies. The goal is to formulate explicitly
this region by means of mathematical programming con-
straints. Since it may not be possible to formulate the exact
performance region, we may have to settle for constructing
a relaxation that contains it.
For example, given a vector x of performance measures,

which must represent expectations (although not necessar-
ily +rst moments) and a cost function c(x), such as the
class-weighted expected number of jobs in a multiclass
queueing system, consider the problem of +nding a lower
bound Z6c(x) on the cost achievable under any scheduling
policy.
We de+ne X to be the performance region spanned by

the performance vector x under all admissible scheduling
policies. The minimum cost achievable is

Z∗ =min c(x)

subject to

x ∈ X:
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Now let P⊇X be a relaxation of the performance region
de+ned by a set of constraints. A lower bound on Z∗ is
obtained by solving the mathematical program

Z =min c(x)

subject to

x ∈ P:

The optimal solution to this mathematical program may
also lead to good, or even optimal, scheduling policies.
The two critical problems the performance region ap-

proach must overcome for tackling a performance optimiza-
tion problem are the following:
1. Generating constraints on the performance region.
2. Designing near optimal policies from the solution to

the resulting relaxations.
Co/man and Mitrani (1980) +rst addressed the prob-

lem of minimizing the class-weighted mean delay in a
multiclass M=M=1 queue, with this approach. They for-
mulated exactly the system’s performance region as a
polyhedron, and showed that the well-known optimal-
ity of priority-index policies (the c� rule) follows from
structural properties of this polyhedron. The scope of this
approach has since been extended to a range of increas-
ingly more complex systems. Drawing on earlier work
by Federgruen and Groenevelt (1988) and Shanthiku-
mar and Yao (1992), Bertsimas and Niño-Mora (1996)
developed a unifying framework for formulating the ex-
act performance region in a wide variety of stochas-
tic scheduling systems that satisfy work conservation
laws (including the classical multiarmed bandit prob-
lem). They showed that the distinctive structural prop-
erty of these stochastic optimization problems (optimality
of priority-index policies) follows from a corresponding
property of their underlying polyhedral performance re-
gions.
Researchers have sought recently to extend further the

scope of the performance region approach, with the aim of
solving hard stochastic optimization problems, such as mul-
ticlass queueing network scheduling (see, e.g., Bertsimas
et al. 1994).
In this paper we extend this line of research by address-

ing an important and intractable extension of the classical
multiarmed bandit problem: the restless bandit problem,
which Papadimitriou and Tsitsiklis (1999) have shown to
be PSPACE-hard.

1.2. Contributions

Our contributions include the following:
1. We present a hierarchy of N LP relaxations for the

restless bandit problem (N being the number of ban-
dits). These relaxations are increasingly stronger at the
expense of requiring increasing computations, and the
last one (N th) is exact. They can be interpreted geo-
metrically in terms of the following projection repre-
sentation idea, nicely outlined in Lov�asz and Schrijver
(1991) p. 169:

It has been recognized recently that to represent a polyhedron
as the projection of a higher-dimensional, but simpler, poly-
hedron, is a powerful tool in polyhedral combinatorics...The
idea is that a projection of a polytope may have more facets
than the polytope itself. This remark suggests that even if
P has exponentially many facets, we may be able to repre-
sent it as the projection of a polytope Q in higher (but still
polynomial) dimension, having only a polynomial number
of facets.

2. We propose a primal-dual heuristic that de+nes
priority indices in terms of optimal dual variables
corresponding to the +rst-order relaxation. We report
computational results which indicate that the heuristic
is exceptionally accurate.

The primal-dual approach to heuristic design, which we
pursue here, is based on, +rst, formulating an LP relaxation
of the problem, and then designing a heuristic form optimal
primal and dual LP solutions. This approach has a fruitful
history in the +eld of combinatorial optimization.

1.3. Structure of the Paper

The paper is structured as follows: In §2 we introduce the
restless bandit problem and review previous work on it. In §3
we review a classical result on LP formulations for Markov
decision chains, and use it as the basic tool to develop a hier-
archy of LP relaxations for the problem, the last of which is
exact. In §4 we present a primal-dual priority-index heuris-
tic for the problem, based on the optimal solution to the
+rst-order relaxation. In §5 we report the results of compu-
tational experiments on the tightness of the relaxations and
the performance of the heuristic. We end the paper with
some concluding remarks.

2. THE RESTLESS BANDIT PROBLEM:
DESCRIPTION, APPLICATIONS AND
BACKGROUND

The restless bandit problem we address is as follows: Con-
sider a collection of N projects, labeled n∈N= {1; : : : ; N}.
Project n can be in one of a +nite number of states
in ∈Sn. At each discrete time epoch t=0; 1; 2; : : : ; ex-
actly M¡N projects must be worked on, or set active.
If project n, in state in, is worked on, then an active
reward R1in is earned, and its state changes in a Marko-
vian fashion, according to an active transition prob-
ability matrix (into state jn with probability p1

injn). If
the project is not worked on, then a passive reward
R0in is received, and its state then changes according
to a passive transition probability matrix (into state jn
with probability p0

injn). Rewards are time-discounted by
a discount factor 0¡�¡1. Projects are selected over
time according to a Markovian scheduling policy u.
Let U denote the class of admissible (Markovian) poli-
cies. The problem consists of +nding a scheduling pol-
icy that maximizes the total expected discounted reward
over an in+nite horizon, and of computing its optimum
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value:

Z∗ = max
u∈U

Eu

[ ∞∑
t=0

(Ra1(t)i1(t) + · · ·+ RaN (t)iN (t) )�
t

]
: (1)

In formulation (1), in(t) and an(t) denote the state and action
(active or passive), respectively, corresponding to project n
at time t. The initial project states are assumed to be known,
and are given by a vector �, with as many components as
project states, where

�in =
{
1 if project n is in state in at time t=0;
0 otherwise:

Notice that the restless bandit problem may be consid-
ered as an extension of the classical multiarmed bandit
problem (see Gittins 1989). The latter corresponds to the
special case that exactly one project is active at every time
(i.e., M =1), and passive projects do not change state (i.e,
p0
inin =1; p0

injn =0 for all n∈N , and in �= jn).

2.1. Applications

The restless bandit problem provides a powerful modeling
framework, as illustrated by the following examples of ap-
plications.

Clinical Trials (Whittle 1988). In this setting, projects
correspond to medical treatments. The state of a project rep-
resents one’s state of knowledge on the e/ectiveness of the
corresponding treatment. Operating a project corresponds to
testing the treatment. If, for example, the virus that the treat-
ments are trying to combat is mutating, then one’s state of
knowledge on the e/ectiveness of each treatment changes
whether or not it is tested.

Aircraft Surveillance (Whittle 1988). M aircraft are try-
ing to track N enemy submarines. The state of a project-
submarine represents one’s state of knowledge of the current
position and velocity of that submarine. Operating a project
corresponds to assigning an aircraft to track the correspond-
ing submarine.

Worker Scheduling (Whittle 1988). A number M of em-
ployees out of a pool of N have to be set to work at any
time. The state of a project-worker represents his state of
tiredness. Selection of a project results in exhaustion of the
corresponding worker, whereas nonselection results in recu-
peration.

Police Control of Drug Markets. In this setting, M po-
lice units are trying to control N drug markets. The state of
a project corresponds to the drug-dealing activity level of
the corresponding drug market. A project=drug market se-
lection corresponds to a police enforcement operation over
that market, and tends to discourage drug-dealing activity.
Nonselection of a project allows drug-dealing activity to
grow in the corresponding market.

Control of a Make-to-Stock Production Facility
(Veatch and Wein 1996). In this setting, a production fa-
cility makes N product classes; each +nished product is

placed in its class-dependent inventory, which services an
exogenous demand. Veatch and Wein (1996) formulate a
lost-sales version of the problem as a restless bandit prob-
lem, where project states represent class inventory levels,
and propose priority-index heuristic rules (based on Whit-
tle’s index policy mentioned below) that exhibit a good
empirical performance.

2.2. Previous Work

The restless bandit problem was +rst investigated by Whittle
(1988), who studied a continuous-time version of the prob-
lem, with a time-average reward criterion, in a dynamic pro-
gramming framework. He introduced a relaxed version of
the problem, which can be solved optimally in polynomial
time. Based on this solution he proposed a priority-index
heuristic policy, which reduces to the optimal Gittins index
policy in the special case of the multiarmed bandit problem.
A disadvantage is that Whittle’s index heuristic only applies
to a restricted class of restless bandits: those satisfying a
certain indexability property, which may be hard to check.
Weber and Weiss (1990) investigated the asymptotic opti-
mality, conjectured by Whittle, of his heuristic, as M and N
grow to ∞, with M=N +xed. Working with continuous-time
restless bandits with at time-average reward criterion, they
presented a su)cient condition for asymptotic optimality.
They also found instances that violate this condition, and in
which Whittle’s heuristic is not asymptotically optimal.
Another line of work has studied the computational com-

plexity of the problem. Papadimitriou and Tsitsiklis (1994)
established that the restless bandit problem is PSPACE-
hard, even in the special case of deterministic transition
rules and M =1. This result is in sharp contrast with the
well-known optimality of Gittins priority-index rule in the
special case of the multiarmed bandit problem, +rst estab-
lished by Gittins and Jones (1974).

3. A HIERARCHY OF LP RELAXATIONS FOR THE
RESTLESS BANDIT PROBLEM

In this section we develop a hierarchy of increasingly
stronger LP relaxations for the restless bandit problem,
the last of which is exact. The key tool for constructing
these relaxations is a classical result on LP formulations
of Markov decision chains (MDCs), which we review
next.

3.1. LP Formulations of MDCs

We consider a +nite-state discrete-time MDC, with a dis-
counted reward criterion. This represents the evolution of
a controlled stochastic system over a +nite state space
S= {1; : : : ; n} and discrete time epochs t=0; 1; 2; : : : :
When the system state is i∈S the controller must select
an action from a +nite set Ai. If action a∈Ai is the one
selected, then (1) the system state changes, at the next time
epoch, to a new state j with a Markov transition probability
paij, for j∈S; and (2) a reward Rai is received, discounted
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in time by a discount factor 0¡�¡1. The goal is to +nd
a Markovian policy (which selects the current action as a
function, possibly randomized, of the current state and time)
which maximizes the total expected discounted reward over
an in+nite time horizon.
We denote by U the class of all admissible (i.e., Marko-

vian) policies. We shall further refer to the subclass of sta-
tionary policies, which are Markovian policies in which the
action selection depends only on the current state, not on the
current time. We further denote by C the state-action space,

C = {(i; a): i∈S; a∈Ai};

and let �i denote the probability that the initial state is i, for
i∈S. The vector �=(�i)i∈S is given.

To formulate this problem mathematically we introduce
the following performance measures:

xaj (u)=Eu

[ ∞∑
t=0

I aj (t)�
t

]
;

where

I aj (t) =



1 if action a is taken at time

t in state j;
0 otherwise:

Notice that xaj (u) is the total expected discounted time that
action a is taken in state j under policy u. Therefore, the
optimization problem described above can be formulated as

Z∗ = max
u∈U

∑
(i; a)∈C

Rai x
a
i (u): (2)

To formulate control problem (2) as a mathematical
programming problem we must describe explicitly the
performance region spanned by performance vector
x(u)= (xaj (u))j∈S; a∈Aj under all admissible policies u∈U.
Denoting it X = {x(u); u∈U}, we can translate (2) into
the mathematical program

Z∗ = max
x∈�

∑
(i; a)∈C

Rai x
a
i ; (3)

where x=(xaj )j∈S; a∈Aj . Let us now introduce the polyhe-
dron

P=


x∈R

|C|
+ :

∑
a∈Aj

xaj = �j

+ �
∑

(i; a)∈C

paij x
a
i ; j∈S


:

Notice that by summing over all j∈S we obtain that∑
(i; a)∈C x

a
i =1=(1 − �) and, therefore, P is a bounded

polyhedron, or polytope. We remark that the equations that

de+neP above represent Mow conservation relations at each
state.
It was +rst shown by d’Epenoux (1960) that, under the

assumption �¿0, polytope P coincides precisely with per-
formance region X . He also showed that, regardless of the
assumption �¿0; X ⊆P.
Next, we strengthen this classical result, by proving that

polytope P always coincides with X, regardless of whether
the assumption �¿0 holds.

THEOREM1(PERFORMANCE REGION OF DISCOUNTED MDCs).
The following statements hold:
(a) X =P.
(b) The vertices of polytope P are achievable by sta-

tionary deterministic policies.

PROOF. See d’Epenoux (1960) for a proof that X ⊆P. Next,
we prove the other inclusion: P⊆X .
Since P is a polytope, any point in P can be written as

a convex combination of its extreme points. Therefore, it
su)ces to show that any extreme point ofP is achievable by
some stationary deterministic policy, since then any point in
P could also be achieved by a randomization of the policies
that achieve the corresponding extreme points.
Let Ox be an extreme point of polytope P. By standard LP

theory, Ox is the unique maximizer of some linear objective
function. Let

∑
(i; a)∈C R

a
i x
a
i be such an objective. Since Ox

is an extreme point of P, which is de+ned by n equality
constraints, it must have at most n positive components. Let
us now partition state space S into two subspaces, S1 and
S2, as follows:

S1 = {j∈S: Oxaj¿0 for some a∈Aj};
and

S2 = {j∈E : Ox aj =0 for all � ∈ Aj}:
Let OxS1 = { Oxaj ; j∈S1}. Consider now the following linear
program:

(LP1) ZS1 = max
∑
j∈S1

∑
a∈Aj

Raj x
a
j

subject to∑
a∈Aj

xaj − �
∑
i∈S1

∑
a∈Ai

paij x
a
i = �j;

j∈S1;

xaj¿0; j∈S1; a∈Aj:
By construction, OxS1 is the unique optimal solution of linear
program (LP1). Therefore, OxS1 is an extreme point of (LP1),
and it thus has at most |S1| positive components. But by
de+nition of S1, it then follows that OxS1 must have exactly
|S1| positive components, and for each state j∈S1 there is
exactly one action Oaj ∈Aj such that Ox Oaj

j ¿0.
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We can now de+ne a stationary deterministic policy Ou that
achieves Ox: For each state j∈S1, let Oaj be de+ned as above,
whereas for each j∈S2 let Oaj be de+ned arbitrarily. Now,
policy Ou which deterministically takes action Oaj in state j
achieves performance vector Ox, which completes the proof
of (a) and (b).

3.2. LP Formulation of the Restless Bandit
Problem

In order to formulate the restless bandit problem as a linear
program we introduce performance measures

x1in(u)=Eu

[ ∞∑
t=0

I 1in(t) �
t

]
;

and

x0in(u)=Eu

[ ∞∑
t=0

I 0in(t) �
t

]
;

where u∈U is an admissible scheduling policy,

I 1in(t)=



1 if project n is in state in and active

at time t;
0 otherwise;

and

I 0in(t)=



1 if project n is in state in and passive

at time t;
0 otherwise:

Notice that performance measure x1in(u) (resp. x
0
in(u)) repre-

sents the total expected discounted time that project n is in
state in and active (resp. passive) under scheduling policy
u. We denote by X the corresponding performance region:

X = {x=(xanin (u))in∈Sn; an∈{0;1}; n∈N | u∈U}:

Since the restless bandit problem is naturally formulated
as a discounted MDC it follows from Theorem 1 that per-
formance region X is a polytope, which we will refer to in
what follows as the restless bandit polytope. The restless
bandit problem can thus be formulated as the linear program

(LP) Z∗ = max
x∈X

∑
n∈N

∑
in∈Sn

∑
an∈{0;1}

Ranin x
an
in :

A polynomially solvable reformulation of problem (LP)
above, for the special case of the multiarmed bandit problem,
was +rst obtained by Bertsimas and Niño-Mora (1996). For
general restless bandits, however, it is highly unlikely that
such a reformulation can be derived since, as mentioned
above, the problem is PSPACE-hard.
The approach we shall develop will be to construct relax-

ations of polytope X that yield polynomial-size relaxations

of linear program (LP). We will represent these relaxations
X̂ ⊇X , not on the space of the original variables xai , but
in a higher-dimensional space that includes new auxiliary
variables (i.e, as projections of higher dimensional polytopes
Q̂).

An advantage of pursuing this projection representation
approach is that we will be able to formulate approximations
X̂ of X having possibly exponentially many facets as pro-
jections of polytopes Q̂ with a polynomial number of facets,
as discussed in the Introduction, thus providing polynomial-
time computable tight bounds on the optimal value Z∗.

3.3. A First-Order LP Relaxation

Whittle (1988) introduced a relaxed version of the restless
bandit problem which can be solved in polynomial time.
The original requirement that exactly M projects must be
active at any time is relaxed to an averaged version: the to-
tal expected discounted number of active projects must be
M=(1 − �). Whittle showed that this relaxed version must
be interpreted as the problem of controlling optimally N
separate MDCs (one for each project), subject to the bind-
ing constraint on the average number of active projects just
stated. In this section we reformulate Whittle’s relaxation as
a polynomial-size linear program.
The restless bandit problem induces a 1rst-order MDC

over each project n in a natural way: The state space of this
MDC is Sn, its action space is A1 = {0; 1}, and the reward
received when action an is taken in state in is R

an
in . Rewards

are discounted in time by discount factor �. The transition
probability from state in into state jn, given action an, is
paninjn . The initial state is in with probability �in (which we
assumed can only be 0 or 1).
Let

Q1
n = {xn=(xanin (u))in∈Sn; an∈A1 | u∈U}:

Notice that polytopeQ1
n is precisely the projection of restless

bandit polytope P over the space of the variable xanin for
project n. Furthermore, Q1

n is also the performance region of
the +rst-order MDC corresponding to project n, as de+ned
above. Applying Theorem 1 we thus obtain:

PROPOSITION 1. A complete formulation of Q1
n is given by

Q1
n =

{
xn ∈R

|Sn×{0;1}|
+

∣∣∣∣x0jn + x1jn
= �jn + �

∑
in∈Sn

∑
an∈{0;1}

paninjnx
an
in ; jn ∈Sn

}
: (4)

REMARK. It follows from Proposition 1 that the general rest-
less bandit problem, with both active and passive rewards,
can be reduced to the case with only active rewards. This
follows since, by (4), the passive performance vector x0n(u)
is a linear transformation of the active one, x1n(u).
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Now, Whittle’s condition on the average number of active
projects can be written as

∑
n∈N

∑
in∈Sn

x1in(u) =
∞∑
t=0

Eu

[ ∑
n∈N

∑
in∈Sn

I 1in(t)

]
�t

=
∞∑
t=0

M�t

=
M

1− � : (5)

Therefore, Whittle’s +rst-order relaxation can be formulated
as the linear program

(LP1) Z1 =max
∑
n∈N

∑
in∈Sn

∑
an∈{0;1}

Ranin x
an
in

subject to

xn ∈Q1
n; n∈N;∑

n∈N

∑
in∈Sn

x1in =
M

1− � :

We will refer to the feasible space of linear program (LP1)
as the 1rst-order approximation to the restless bandit poly-
tope P, and will denote it P1. Notice that linear program
(LP1) has O(N |Smax|) variables and constraints, where
|Smax|= maxn∈N |Sn|, and its size is thus polynomial in
the problem dimensions.

3.4. A Second-Order LP Relaxation

In this section we present a new LP relaxation for the rest-
less bandit problem, which is stronger than Whittle’s, yet of
polynomial size. This new relaxation involves auxiliary vari-
ables, which correspond to second-order performance mea-
sures for the restless bandit problem, associated with project
pairs. Given a pair of projects, n1¡n2, the valid actions
which can be taken over each pair of states, (i1; i2)∈Sn1 ×
Sn2 , range over

A2 = {(a1; a2)∈{0; 1}2 | a1 + a26M}:
Given an admissible scheduling policy u, we de+ne the
second-order performance measures by

xa1a2i1i2 (u) = Eu

[ ∞∑
t=0

I a1i1 (t)I
a2
i2 (t)�

t

]
:

Similarly as in the +rst-order case, the restless bandit prob-
lem induces a second-order MDC over each pair of projects
n1¡n2 in a natural way: The state space of the MDC is
Sn1 × Sn2 , its action space is A2, and the reward corre-
sponding to state (in1 ; in2 ) and action (an1 ; an2 ) is R

an1
in1

+R
an2
in2
.

Rewards are discounted in time by discount factor �. The
transition probability from state (in1 ; in2 ) into state (jn1 ; jn2 ),
given action (an1 ; an2 ), is p

an1
in1 jn1

p
an2
in2 jn2

. The initial state is

(in1 ; in2 ) with probability �in1 · �in2 (which, again, can only
be 0 or 1). Let

Q2
n1 ; n2 = {xn1 ; n2 = (xa1a2i1i2 (u))i1∈Sn1 ; i2∈Sn2 ; (a1 ; a2)∈A2 |

u∈U};
be the projection of restless bandit polytopeP over the space
of second-order variables (xa1a2i1i2 )i1∈Sn1 ; i2∈Sn2 ; (a1 ; a2)∈A2 . No-
tice that Q2

n1 ; n2 is also the performance region of the second-
order MDC corresponding to project pair (n1; n2), as de+ned
above. Applying Theorem 1 we obtain:

PROPOSITION 2. A full formulation of polytopeQ2
n1 ; n2 is given

by ∑
(a1 ; a2)∈A2

xa1a2j1j2 = �j1�j2

+ �
∑

i1∈Sn1 ; i2∈Sn2
(a1 ; a2)∈A2

pa1i1j1p
a2
i2j2x

a1a2
i1i2 ;

(j1; j2)∈S1 ×S2; (6)

xa1a2i1i2 ¿0; (i1; i2)∈Sn1 ×Sn2 ; (a1; a2)∈A2: (7)

We next develop several additional linear identities on
second-order performance measures, by applying simple
combinatorial arguments. These identities will serve to
strengthen the second-order relaxation we present later. For
any admissible scheduling policy u, we have, if N¿M +2,

∑
16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

x00i1i2 (u) =

(
N −M

2

)
1− � ; (8)

since the N −M passive projects required at any time cor-
respond to

(N−M
2

)
passive-passive project pairs. Moreover,∑

16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

(x10i1i2 (u) + x
01
i1i2 (u))

=
M (N −M)

1− � ; (9)

since at any time the M active and N−M passive required
projects give rise toM (N −M) active-passive project pairs.
Furthermore, in the case that M¿2, we have

∑
16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

x11i1i2 (u) =

(
M
2

)
1− � ; (10)

since at any time the M¿2 active projects give rise to
(M

2

)
active-active project pairs.
We next relate the +rst and second-order performance

measures. It is easy to see that, for any admissible policy u,

xa1i1 (u) =
∑
i2∈Sn2 ;

a2:(a1 ; a2)∈A2

xa1a2i1i2 (u);

i1 ∈Sn1 ; a1 ∈{0; 1}; 16n1¡n26N; (11)



86 / BERTSIMAS AND NIÑO-MORA

and

xa2i2 (u) =
∑
i1∈Sn1 ;

a1:(a1 ; a2)∈A2

xa1a2i1i2 (u);

i2 ∈Sn2 ; a2 ∈{0; 1}; 16n1¡n26N: (12)

We introduce next the second-order LP relaxation for the
restless bandit problem, which is based on the above iden-
tities:

(LP2) Z2 =max
∑
n∈N

∑
in∈Sn

∑
an∈{0;1}

Ranin x
an
in

subject to

xn1 ; n2 ∈Q2
n1 ; n2 ; 16n1¡n26N;∑

16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

x00i1i2

=

(
N −M

2

)
1− � ;

∑
16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

(x10i1i2 + x
01
i1i2 )

=
M (N −M)

1− � ;

∑
16n1¡n26N

∑
i1∈Sn1

∑
i2∈Sn2

x11i1i2

=

(
M
2

)
1− � ;

xa1i1 =
∑

i2∈Sn2a2:(a1 ; a2)∈A2

xa1a2i1i2 ;

i1 ∈Sn1 ; a1 ∈{0; 1}; 16n1 ¡ n26N;

xa2i2 =
∑
i2∈Sn1

∑
a1:(a1 ; a2)∈A2

xa1a2i1i2 ;

i2 ∈Sn2 ; a2 ∈{0; 1}; 16n1 ¡ n26N;∑
n∈N

∑
in∈Sn

∑
an∈{0;1}

x1in =
M

1− � ;

xai¿0:

We de+ne the second-order approximation to the restless
bandit polytope P as the projection of the feasible space
of linear program (LP2) into the space of the +rst-order
variables, xai , and will denote it as P2.

Notice that second-order relaxation (LP2) has
O(N 2|Smax|2) variables and constraints (recall that
|Smax|= maxn∈N |Sn|).

3.5. Higher-Order LP relaxations

The idea for constructing the second-order LP relaxation
above can be readily extended to develop higher-order LP
relaxations: For the kth-order case the new auxiliary vari-

ables corresond to project k-tuples (n1; : : : ; nk), whereas the
admissible actions over a corresponding k-tuple of states
(i1; : : : ; ik) range over

Ak = {(a1; : : : ; ak)∈{0; 1}k | a1 + · · ·+ ak6M}:
The auxiliary variable xa1···akj1···jk corresponds to the kth-order
performance measure

xa1···akj1···jk (u)=Eu

[ ∞∑
t=0

I a1j1 (t) · · · I akjk (t)�t
]
;

j1 ∈Sn1 ; : : : ; jk ∈Snk ; (13)

which accounts for interactions between project k-tuples.
We can construct, similarly as above, a kth-order LP re-

laxation (LPk), with objective value Zk . Furthermore, we
de+ne the kth-order approximation Pk to the restless bandit
polytope P as the projection of the feasible space of (LPk)
into the space of +rst-order variables xai . Clearly the result-
ing sequence of approximations is monotone, so that

P1 ⊇P2 ⊇ · · ·⊇PN =P;

and therefore

Z1¿Z2¿ · · ·¿ZN =Z∗:

Notice that the kth-order relaxation (LPk) has O
(Nk |Smax|k) variables and constraints, and it has therefore
polynomial size for +xed k (though the size is exponential
if we allow k to vary).
The last relaxation of the sequence, (LPN ), is exact (i.e.,

ZN =Z∗), since it corresponds to the standard LP formula-
tion of the restless bandit problem modeled as an MDC.

4. A PRIMAL-DUAL HEURISTIC FOR THE
RESTLESS BANDIT PROBLEM

In this section we present a heuristic for the restless bandit
problem, which uses information contained in optimal pri-
mal and dual solutions to the +rst-order relaxation (LP1).
Under some mixing assumptions on active and passive tran-
sition probabilities, we interpret the primal-dual heuristic as
a priority-index heuristic. The dual of linear program (LP1)
is

(D1) Z1 =min
∑
n∈N

∑
jn∈Sn

�jn�jn +
M

1− ��

subject to

�in − �
∑
jn∈Sn

p0
injn�jn¿R

0
in ;

in ∈Sn; n∈N;

�in − �
∑
jn∈Sn

p1
injn�jn + �¿R

1
in ;

in ∈Sn; n∈N;

�¿0: (14)



BERTSIMAS AND NIÑO-MORA / 87

Let { Oxanin }; { O�in ; O�}, be an optimal primal and dual solution
pair to the +rst-order relaxation (LP1) and its dual (D1). Let
{O�anin } be the corresponding optimal reduced cost coe)cients,
i.e.,

O�0in =
O�in − �

∑
jn∈Sn

p0
injn

O�jn − R0in ;

O�1in =
O�in − �

∑
jn∈Sn

p1
injn

O�jn + O�− R1in ;

which must be nonnegative. It is well known (cf. Murty
1983, pp. 64–65), that the optimal reduced costs have the
following interpretation:
O�1in is the rate of decrease in the objective-value of linear

program (LP1) per unit increase in the value of the vari-
able x1in ,

O�0in is the rate of decrease in the objective-value of linear
program (LP1) per unit increase in the value of the vari-
able x0in .
The proposed heuristic takes as input the vector of current

states of the projects, (i1; : : : ; iN ), optimal primal solution
{ Oxanjn }, and the corresponding optimal reduced costs {O�anjn },
and produces as ouput the action to take on each project,
(a∗(i1); : : : ; a∗(iN )). An informal description of the heuristic,
with its motivation, follows.
The heuristic is structured in a primal and a dual stage.

In the primal stage, projects n whose corresponding active
primal variable Ox1in is strictly positive are considered as can-
didates for active selection. The intuition is that we give
preference for active selection to projects with positive Ox1in
with respect to those with Ox1in =0, which seems natural given
the interpretation of performance measure x1in(·) as the total
expected discounted time spent selecting project n in state
in as active. Let p represent the number of such projects. In
the case that p=M , then all M candidate projects are set
active. If p¡M , then all p candidate projects are set active
and the heuristic proceeds to the dual stage that selects the
remaining M −p projects. If p¿M none of them is set ac-
tive at this stage and the heuristic proceeds to the dual stage
that +nalizes the selection.
In the dual stage, in the case that p¡M , then M − p

additional projects, each with current active primal variable
zero (Ox1in =0), must be selected for active operation among
the N − p projects whose actions have not yet been +xed.
As a heuristic index of the undesirability of setting project
n in state in active, we take the active reduced cost O�1in .
This choice is motivated by the interpretation of O�1in stated
above: the larger the active index �1in is, the larger is the
rate of decrease of the objective-value of (LP1) per unit
increase in the active variable x1in . Therefore, in the heuristic
we select for active operation the M −p additional projects
with smallest active reduced costs.
In the case that p¿M , then M projects must be selected

for active operation, among the p projects with Ox1in¿0. Re-
call that by complementary slackness, O�1in =0 if Ox1in¿0. As a
heuristic index of the desirability of setting project n in state
in active we take the passive reduced cost O�0in . The motivation

is given by the interpretation of O�0in stated above: the larger
the passive index �0in is, the larger is the rate of decrease in
the objective-value of (LP1) per unit increase in the value of
the passive variable x0in . Therefore, in the heuristic we select
for active operation the M projects with largest passive re-
duced costs. The heuristic is described formally in Table 1.

4.1. An Index Interpretation of the Primal-Dual
Heuristic

We next observe that, under natural mixing conditions, the
primal-dual heuristic described above reduces to a priority-
index rule. For each project n∈N we consider a directed
graph that is de+ned from the passive and active transition
probabilities respectively as follows: Gn=(Sn; An), where
An= {(in; jn)|p0

injn¿0, and p1
injn¿0 in; jn ∈Sn}. We intro-

duce the following mixing assumption:

ASSUMPTION 1. For every n∈N the directed graph Gn is
connected.

Since polytope P1 has independent constraints (i.e., in-
volving di/erent variable sets) for every n∈N and only
one global constraint, elementary LP theory yields

PROPOSITION 3. Under Assumption 1; every extreme point
Ox of polytope P1 has the following properties:
(a) There are at most one project k and one state ik ∈Sk

for which Ox1ik¿0 and Ox0ik¿0.
(b) For all other projects n and all other states either

Ox1in¿0 or Ox0in¿0.

Therefore, starting with an optimal extreme point solu-
tion Ox and a complementary dual optimal solution, with cor-
responding reduced costs O�, we consider the priority-index
rule de+ned next.

Priority-Index Heuristic.
1. Given the current states (i1; : : : ; iN ) of the N projects,

compute the indices

!in = O�1in − O�0in :

2. Set active the projects that have the M smallest indices.
In case of ties, set active projects with Ox1in¿0.

We next remark that under Assumption 1, the primal-dual
and the priority-index heuristics are the same. To see this
we consider +rst the case p6M . The primal-dual heuris-
tic would set active +rst the projects that have Ox1in¿0. From
complementarity, these projects have O�1in =0 and therefore,
!in60. Then, the primal-dual heuristic sets active the re-
mainingM−p projects with the smallest O�1in . Since for these
projects Ox1in =0 and therefore, Ox0in¿0, i.e., O�0in =0, we obtain
that !in = O�1in¿0. Therefore, the choices of the two heuristics
are indeed identical.
Ifp¿M , the primal-dual heuristic sets active the projects

that have the largest values of O�0in . For these projects O�
1
in =0,

and therefore, !in = − O�0in60. Since the remaining projects
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Table 1. The primal-dual heuristic.

Input:

•(i1; : : : ; iN ) {current states of the N projects}
•{ Ox anjn } {optimal primal solution to 1rst-order relaxation (LP1)}
•{O�anjn } {optimal reduced costs for 1rst-order relaxation (LP1)}

Output:

•(a∗(i1); : : : ; a∗(iN )) {actions to take at each project}
{Initialization:}
set S :=∅; {S: set of projects whose actions have been set}
set a∗(in) := 0, for n∈N; {actions are initialized as passive}

{Primal Stage:}
set p := |{ Ox1in : Ox1in¿0; n∈N}| {p: number of projects with positive active primals}

if p6M then {set active the projects with positive active primals, if6M}
for n∈N do

if Ox1in¿0 then
begin
set a∗(in) := 1;
set S := S ∪ {n}
end

{Dual Stage:}
if p¡M then {set active M − p extra projects with smallest active reduced costs}
until |S|=M do
begin

select On ∈ argmin{ O� 1in : n ∈ N\S}
set a∗(i On) := 1;
set S := S ∪ { On}
end

if p¡M then {set active M projects with largest passive reduced costs}
until |S| = M do
begin

select On ∈ argmax{ O� 0in : n ∈ N\S}
set a∗(i On) := 1;
set S := S ∪ { On}
end

have !in = O�1in60, the choices of the two heuristics are iden-
tical in this case as well.
In contrast with the Gittins indices for usual bandits (see

Gittins 1989), the indices !in for a particular project de-
pend on characteristics of all other projects. In particular,
we have veri+ed experimentally that these indices do not
reduce to Gittins indices in the case of classical multiarmed
bandits.

5. COMPUTATIONAL EXPERIMENTS

In this section we report the results of a series of compu-
tational experiments to investigate the tightness of the re-
laxations and the performance of the primal-dual heuristic

introduced in this paper. For each test problem we computed
the following quantities:
ZGreedy: Estimated (through simulation) expected value of

the greedy heuristic (at each time M projects with largest
active reward are operated). We simulate a run using the
heuristic policy and we obtain a value for the reward for the
particular run. In order to obtain the value for a particular
run, we truncated the in+nite summation in (1) ignoring
terms after time t, such that �t¿10−10. Even if we used a
smaller tolerance, the results did not change. The stopping
criterion for the simulation was that the di/erence between
the average from the +rst l + 1 runs and the average from
the +rst l runs is less than 10−5 (using a smaller tolerance
did not change the results in this case as well).
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Table 2. Numerical experiments.

Problem
(N; |Sn|; M) � ZGreedy ZPDH Z∗ Z2 Z1

Problem 1 0.20 59.9 59.9 70.62 74.67
(10,7,1) 0.50 124.2 124.3 162.05 166.35

0.90 814.4 819.1 898.99 913.40
Problem 2 0.20 117.1 117.3 117.92 118.46
(10,7,1) 0.50 180.2 180.2 183.89 186.10

0.90 863.1 863.4 894.18 915.44
Problem 3 0.50 14.7 14.7 14.72 15.33 16.10
(5,3,1) 0.90 81.3 81.5 81.55 84.54 85.29

0.95 164.5 164.9 164.98 169.60 171.07
Problem 4 0.50 10.8 11.4 11.40 11.65 11.92
(5,3,1) 0.90 65.1 75.1 75.15 75.99 78.36

0.95 135.5 156.0 156.09 157.81 162.12
Problem 5 0.50 19.2 21.5 21.63 21.93 21.93
(5,3,2) 0.90 122.5 144.5 144.73 146.50 147.29

0.95 257.2 300.1 300.35 303.73 305.68
Problem 6 0.50 28.0 30.8 30.95 31.33 31.53
(5,3,3) 0.90 167.5 209.5 209.56 209.56 209.56

0.95 346.2 434.7 434.74 434.74 434.74
Problem 7 0.50 10.7 10.9 10.93 10.93 10.93
(5,3,4) 0.90 58.0 74.3 74.35 74.37 74.55

0.95 119.2 154.0 154.09 154.09 154.42

ZPDH: Estimated expected value of primal-dual heuristic.
The estimation was achieved through simulation as
for ZGreedy.

Z∗: Optimal value, which is equal to ZN (due to the
size of the formulation, this value was calculated
only for small instances).

Z2: Optimal value of the second-order relaxation
(LP2).

Z1: Optimal value of the +rst-order relaxation (LP1).

The heuristics and the simulation experiments were im-
plemented in C. The LP formulations were implemented us-
ing GAMS and solved using CPLEX. All the experiments
were performed in a SUN 10 workstation. In order to test
the proposed approach we generated 7 problem instances as
described next.
Problems 1 and 2 involve 10 projects with 7 states each,

with M =1, and their data (the reward vectors and the
passive and active transition probabilities) was randomly
generated. For these problems we could not compute the
optimal solution because of their large sizes. Since these
instances were randomly generated we expected that the
greedy heuristic would perform very close to the optimal
solution. To further test this we generated Problem 3, which
has 5 projects with 3 states each, for which the data was
also randomly generated and M =1.

Problems 4 has 5 projects with 3 states each, with M =1.
The data was designed so that a greedy heuristic would
perform poorly. Problems 5 through 7 have the same data as
Problem 4, except that the number of active projects ranges
from M =2 through M =4, respectively.

The projects in each problem are di/erent (i.e., have dif-
ferent rewards and transition probabilities).
In Table 2 we report the results of our experiments for

various values of the discount factor �. We next discuss
these results.
1. The primal-dual heuristic performed exceptionally

well. It was essentially optimal in Problems 3–7 and it was
slightly better than the greedy heuristic in Problems 1 and
2. Since we expect the greedy heuristic to be near-optimal
for randomly generated instances (as a veri+cation Problem
3 had also randomly generated data and the greedy heuristic
was extremely close to optimal), we believe the heuristic is
extremely close to the optimal solution for Problems 1 and
2 as well. For this reason, we did not experiment with other
heuristics, as we feel that the quality of solutions produced
by the primal-dual heuristic is adequate for solving realistic
size problems.
2. Regarding the performance of the relaxations, the

bounds from the second-order relaxation improve signi+-
cantly over the +rst-order ones, and in most instances the
bound was very close to the exact optimal value. In Problem
1 there is a wider gap between the value of the primal-dual
heuristic and the value of the second-order relaxation. The
closeness of the value of the heuristic with the value of the
greedy solution (which is expected to be near optimal in
this case), suggests that the main source of this gap is the
inaccuracy of the second-order bound.
3. As expected, the performance of the greedy heuristic

deteriorates as the discount factor approaches 1, since in
that case the long-term impact of current decisions is more
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heavily weighted. The primal-dual heuristic outperforms the
greedy heuristic over the sample problems (it performs sig-
ni+cantly better in instances with higher discount factors,
and never worse, even for �=0:2). Notice that in the ran-
domly generated instances both heuristics yield very close
rewards.
4. Notice that, though Problems 4–7 share the same date

except thatM =1; 2; 3; 4, respectively, the Z∗ values are not
monotonic on M (they decrease when M =4). This is due
to the fact that we require exactly M projects to be active
at each time, not at most M, which explains this lack of
monotonicity.
5. The solution of the second-order relaxations took sig-

ni+cantly more time than that of the +rst-order ones, but it
was within reasonable time limits in all instances (at most
10 minutes).
We further remark that we have checked, in other exper-

iments, that the second-order relaxation is not exact when
applied to classical multiarmed bandits.

6. CONCLUDING REMARKS

We have proposed an approach that provides a feasible
policy together with a guarantee for its suboptimality for
the restless bandit problem. Our computational experiments
suggest that the primal-dual heuristic has excellent perfor-
mance, while the second-order relaxation is quite strong.
Our approach has the attractive feature that it can produce
increasingly stronger suboptimality bounds at the expense
of increased computational times.
We believe that our results demonstrate that ideas that

have been successful in the +eld of discrete optimization
(strong formulations, projections, and primal-dual heuris-
tics) in the last two decades, can be used successfully in the
+eld of stochastic optimization. Although we have only ad-
dressed the restless bandit problem in this paper, given the
generality and complexity (PSPACE-hard) of the problem
we expect that these ideas should have wider applicability.
We intend to pursue them further in the context of other
important stochastic optimization problems.
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